

TMBT2222AT

COLLECTOR

EMITTER

1 BASE

General Purpose Transistor NPN Silicon

FEATURES:

• We declare that the material of product compliance with RoHS requirements.

Circuit Diagram & Pin Configuration:

SOT-523/SC-89

DEVICE MARKING AND ORDERING INFORMATION

Device	Marking	Shipping
TMBT2222AT	1P	3000/Tape&Reel

MAXIMUM RATINGS ($T_A = 25^{\circ}C$)

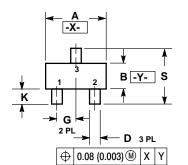
Rating	Symbol	Max	Unit
Collector-Emitter Voltage	V _{CEO}	40	Vdc
Collector-Base Voltage	V _{CBO}	75	Vdc
Emitter-Base Voltage	V _{EBO}	6.0	Vdc
Collector Current – Continuous	Ι _C	600	mAdc

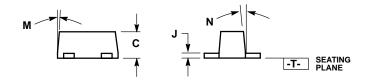
THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation (Note 1) T _A = 25°C	P _D	150	mW
Thermal Resistance, Junction-to-Ambient	R_{\thetaJA}	833	°C/W
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

TMBT2222A**T**

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

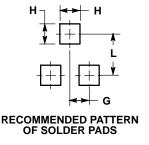

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			1	•
Collector – Emitter Breakdown Voltage (Note 1) $(I_C = 1.0 \text{ mAdc}, I_B = 0)$	V _{(BR)CEO}	40	-	Vdc
Collector – Base Breakdown Voltage $(I_C = 10 \ \mu Adc, I_E = 0)$	V _{(BR)CBO}	75	-	Vdc
Emitter – Base Breakdown Voltage ($I_E = 10 \ \mu Adc, I_C = 0$)	V _{(BR)EBO}	6.0	-	Vdc
Base Cutoff Current (V _{CE} = 60 Vdc, V _{EB} = 3.0 Vdc)	I _{BL}	-	20	nAdc
Collector Cutoff Current (V _{CE} = 60 Vdc, V _{EB} = 3.0 Vdc)	I _{CEX}	-	100	nAdc
ON CHARACTERISTICS (Note 2)			•	•
DC Current Gain $(I_C = 0.1 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$ $(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$ $(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$ $(I_C = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$ $(I_C = 500 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	H _{FE}	35 50 75 100 40	- - - -	_
Collector – Emitter Saturation Voltage ($I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc}$)	V _{CE(sat)}	-	0.3 1.0	Vdc
Base – Emitter Saturation Voltage $(I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc})$ $(I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc})$	V _{BE(sat)}	0.6	1.2 2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain – Bandwidth Product (I _C = 20 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	f _T	250	-	MHz
Output Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$	C _{obo}	-	8.0	pF
Input Capacitance $(V_{EB} = 0.5 \text{ Vdc}, I_C = 0, f = 1.0 \text{ MHz})$	C _{ibo}	-	30	pF
Input Impedance $(V_{CE} = 10 \text{ Vdc}, I_C = 10 \text{ mAdc}, f = 1.0 \text{ kHz})$	h _{ie}	0.25	1.25	kΩ
Voltage Feedback Ratio $(V_{CE} = 10 \text{ Vdc}, I_C = 10 \text{ mAdc}, f = 1.0 \text{ kHz})$	h _{re}	-	4.0	X 10 ⁻⁴
$ Small - Signal Current Gain \\ (V_{CE} = 10 \ Vdc, \ I_C = 10 \ mAdc, \ f = 1.0 \ kHz) $	h _{fe}	75	375	-
Output Admittance $(V_{CE} = 10 \text{ Vdc}, I_C = 10 \text{ mAdc}, f = 1.0 \text{ kHz})$	h _{oe}	25	200	μmhos
Noise Figure (V_{CE} = 10 Vdc, I_C = 100 μ Adc, R_S = 1.0 k ohms, f = 1.0 kHz)	NF	_	4.0	dB
SWITCHING CHARACTERISTICS				


Delay Time	$(V_{CC} = 3.0 \text{ Vdc}, V_{BE} = -0.5 \text{ Vdc},$	t _d	-	10	20
Rise Time	I _C = 150 mAdc, I _{B1} = 15 mAdc)	t _r	-	25	ns
Storage Time	(V _{CC} = 30 Vdc, I _C = 150 mAdc,	ts	-	225	ns
Fall Time	I _{B1} = I _{B2} = 15 mAdc)	t _f	-	60	115

1. Device mounted on FR4 glass epoxy printed circuit board using the minimum recommended footprint. 2. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

inysemi

TMBT2222AT



SC-89

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETERS
- 2. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE
- MATERIAL. 4. 463C-01 OBSOLETE, NEW STANDARD 463C-02.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	1.50	1.60	1.70	0.059	0.063	0.067	
В	0.75	0.85	0.95	0.030	0.034	0.040	
C	0.60	0.70	0.80	0.024	0.028	0.031	
D	0.23	0.28	0.33	0.009	0.011	0.013	
G	0.50 BSC			0.020 BSC			
Н		0.53 REF			0.021 REF		
J	0.10	0.15	0.20	0.004 0.006 0.0			
K	0.30	0.40	0.50	0.012	0.016	0.020	
L		1.10 REF).043 REF		
M			10 °			10 °	
N			10 °			10 °	
S	1.50	1.60	1.70	0.059	0.063	0.067	

NOTICE

The information presented in this document is for reference only. Tinysemi reserves the right to make changes without notice for the specification of the products displayed herein.

The product listed herein is designed to be used with ordinary electronic equipment or devices, and not designed to be used with equipment or devices which require high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), Tintsemi elec Co., Ltd., or anyone on its behalf, assumes no responsibility or liability for any damagers resulting from such improper use of sale.

This publication supersedes & replaces all information reviously supplied. For additional information, please visit our website http://www.tinysemi.com , or consult your nearest Tinysemi' s sales office for further assistance.