Tinysemi®

TESDNxxx1AD52

Transient Voltage Suppressors for ESD Protection

FEATURES:

- Low Clamping Voltage
- Small Body Outline Dimensions: 0.047" x 0.032" (1.20 mm x 0.80 mm)
- Low Body Height: 0.028" (0.7 mm)
- Stand-off Voltage: 2.5 V 12 V
- Peak Power up to 240 Watts @ 8 x 20 µs Pulse
- Low Leakage
- Response Time is Typically < 1 ns
- ESD Rating of Class 3 (> 16 kV) per Human Body Model
- IEC61000–4–2 Level 4 ESD Protection
- IEC61000-4-4 Level 4 EFT Protection

Circuit Diagram & Pin Configuration:

PIN 1. CATHODE 2. ANODE

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
IEC 61000–4–2 (ESD) Contact Air		±30 ±30	kV
IEC 61000-4-4 (EFT)		40	А
ESD Voltage Per Human Body Model Per Machine Model		16 400	kV V
Total Power Dissipation on FR–4 Board (Note 1) @ $T_A = 25^{\circ}C$	PD	500	mW
Junction and Storage Temperature Range	T _J , T _{stg}	–55 to +150	°C
Lead Solder Temperature – Maximum (10 Second Duration)	TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. FR-4 printed circuit board, single-sided copper, mounting pad 1 cm².

See Application Note AND8308/D for further description of survivability specs.

TESDNxxx1AD52

Tinysemi®

ELECTRICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
V _C	Clamping Voltage @ I _{PP}
V _{RWM}	Working Peak Reverse Voltage
I _R	Maximum Reverse Leakage Current @ $V_{\mbox{\scriptsize RWM}}$
V _{BR}	Breakdown Voltage @ I _T
Ι _Τ	Test Current
١ _F	Forward Current
V _F	Forward Voltage @ I _F
P _{pk}	Peak Power Dissipation
С	Max. Capacitance $@V_R = 0$ and f = 1 MHz

*See Application Note AND8308/D for detailed explanations of datasheet parameters.

ELECTRICAL CHARACTERISTICS (TA	= 25°C unless otherwise noted, V_F = 1.1	V Max. @ $I_F = 10 \text{ mA for all types}$)
--------------------------------	--	--

		V _{RWM} (V)	I _R (μΑ) @ V _{RWM}	V _{BR} (V) @ I _T (Note 2)	ŀт	V _C (V) @ I _{PP} = 5.0 A [†]	V _C (V) @ Max I _{PP} †	І _{РР} (А) [†]	P _{pk} (W) [†]	C (pF)	v _c
Device*	Device Marking	Max	Max	Min	mA	Тур	Max	Max	Мах	Тур	Per IEC61000-4-2 (Note 3)
TESDN2V51AD52	ZD	2.5	6.0	4.0	1.0	6.5	10.9	11.0	120	145	Figures 1 and 2
TESDN3V31AD52	ZE	3.3	0.05	5.0	1.0	8.4	14.1	11.2	158	105	(Note 4)
TESDN051AD52	ZF	5.0	0.05	6.2	1.0	11.6	18.6	9.4	174	80	
TESDN061AD52	ZG	6.0	0.01	6.8	1.0	12.4	20.5	8.8	181	70	
TESDN071AD52	ZH	7.0	0.01	7.5	1.0	13.5	22.7	8.8	200	65	
TESDN121AD52	ZM	12	0.01	14.1	1.0	17	25	9.6	240	55	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

* Includes SZ-prefix devices where applicable.

†Surge current waveform per Figure 5.

2. V_{BR} is measured with a pulse test current I_T at an ambient temperature of 25°C.

3. For test procedure see Figures 3 and 4 and Application Note AND8307/D.

Tek Run: 1.25GS/s Sample

TESDNxxx1AD52

IEC 61000-4-2 Spec.

Level	Test Volt- age (kV)	First Peak Current (A)	Current at 30 ns (A)	Current at 60 ns (A)
1	2	7.5	4	2
2	4	15	8	4
3	6	22.5	12	6
4	8	30	16	8

Figure 3. IEC61000-4-2 Spec

Figure 4. Diagram of ESD Test Setup

The following is taken from Application Note AND8308/D – Interpretation of Datasheet Parameters for ESD Devices.

ESD Voltage Clamping

For sensitive circuit elements it is important to limit the voltage that an IC will be exposed to during an ESD event to as low a voltage as possible. The ESD clamping voltage is the voltage drop across the ESD protection diode during an ESD event per the IEC61000–4–2 waveform. Since the IEC61000–4–2 was written as a pass/fail spec for larger

systems such as cell phones or laptop computers it is not clearly defined in the spec how to specify a clamping voltage at the device level.

www.Tinysemi.com

TESDNxxx1AD52

PACKAGE DIMENSIONS

NOTICE

The information presented in this document is for reference only. Tinysemi reserves the right to make changes without notice for the specification of the products displayed herein.

The product listed herein is designed to be used with ordinary electronic equipment or devices, and not designed to be used with equipment or devices which require high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), Tintsemi elec Co., Ltd., or anyone on its behalf, assumes no responsibility or liability for any damagers resulting from such improper use of sale.

This publication supersedes & replaces all information reviously supplied. For additional information, please visit our website http://www.tinysemi.com , or consult your nearest Tinysemi' s sales office for further assistance.