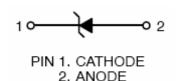


Transient Voltage Suppressors for ESD Protection

FEATURES:

Small Body Outline Dimensions:


0.039 x 0.024(1.0 mm x 0.60 mm)

- Low Body Height: 0.017 (0.43 mm) Max
- Stand-off Voltage: 3.3 V 12 V
- Low Leakage
- Response Time is Typically < 1 ns
- ESD Rating of Class 3 (> 16 kV) per Human Body Model
- IEC61000-4-2 Level 4 ESD Protection
- These are Pb-Free Devices
- We declare that the material of product

Circuit Diagram & Pin Configuration:

DEVICE MARKING AND ORDERING INFORMATION

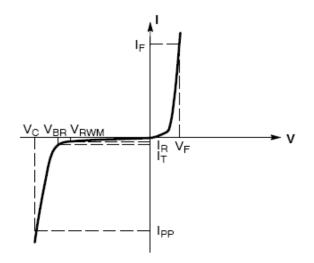
Device	Marking	Shipping	
TESDN051AD92	G	8000/Tape&Reel	

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
IEC 61000-4-2 (ESD) Air Contact Contact discharge		±15 ±8	kV kV
ESD Voltage Per Human Body Model		16	kV
Total Power Dissipation on FR-5 Board (Note 1) @ T _A =25	PD	150	Mw
Junction and Storage Temperature Range	TJ,TSTG	-55 to 150	
Lead Solder Temperature – Maximum (10 Second Duration)	TL	260	

Stresses exceeding Maximum Ratings may damage the device. Maximum Rating are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. FR-5 = 1.0*0.75*0.62 in.



TESDN051AD92

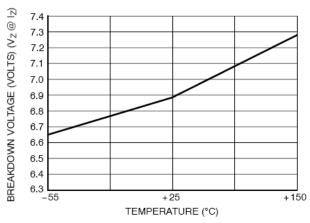
ELECTRICAL CHARACTERISTICS

(T_Δ = 25°C unless otherwise noted)

(TA = 20 0 diffess otherwise floted)					
Symbol	Parameter				
I _{PP}	Maximum Reverse Peak Pulse Current				
Vc	Clamping Voltage @ IPP				
V_{RWM}	Working Peak Reverse Voltage				
I _R	Maximum Reverse Leakage Current @ V _{RWM}				
V_{BR}	Breakdown Voltage @ I _T				
I _T	Test Current				
I _F	Forward Current				
V _F	Forward Voltage @ I _F				
P_{pk}	Peak Power Dissipation				
С	Max. Capacitance @V _R = 0 and f = 1 MHz				

Uni-Directional TVS

ELECTRICAL CHARACTERISTICS (T_A=25 unless otherwise noted, VF=0.9V Max. @ IF=10Ma for all types)


	V_{RWM}	I _R	V_{BR}	Ι _Τ	I _{PP}	V _C	P_{PK}	С
Device	(V)	(μ A)	(V)	(mA)	(A)	(V)	(W)	(pF)
		@	@ I _T			@ Max I _{PP}	(8*20 µs)	
		V_{RWM}	(Note 2)		(Note 3)	(Note 3)		
	Max	Max	Min		Max	Max	Тур	Тур
TESDN051AD92	5.0	1.0	6.2	1.0	8.7	12.3	107	65

Other voltage available upon request.

- 2. V_{BR} is measured with a pulse test current IT at an ambient temperature of 25
- 3. Surge current waveform per Figure 3.

TYPICAL CHARACTERISTICS

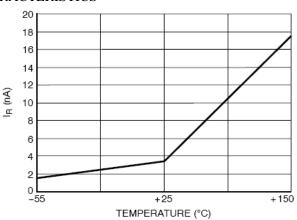


Figure 1. Typical Breakdown Voltage versus Temperature

Fig 2. Typical Leakage Current versus
Temperature

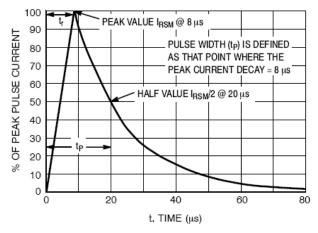
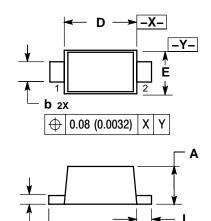
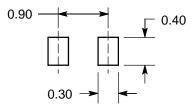



Figure 3. 8*20 s Pulse Waveform

TESDN051AD92

SOD-923



NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETERS.
- 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	MON	MAX
Α	0.34	0.37	0.40	0.013	0.015	0.016
b	0.15	0.20	0.25	0.006	800.0	0.010
С	0.07	0.12	0.17	0.003	0.005	0.007
D	0.75	0.80	0.85	0.030	0.031	0.033
Ε	0.55	0.60	0.65	0.022	0.024	0.026
HE	0.95	1.00	1.05	0.037	0.039	0.041
L	0.05	0.10	0.15	0.002	0.004	0.006

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

NOTICE

The information presented in this document is for reference only. Tinysemi reserves the right to make changes without notice for the specification of the products displayed herein.

The product listed herein is designed to be used with ordinary electronic equipment or devices, and not designed to be used with equipment or devices which require high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), Tintsemi elec Co., Ltd., or anyone on its behalf, assumes no responsibility or liability for any damagers resulting from such improper use of sale.

This publication supersedes & replaces all information reviously supplied. For additional information, please visit our website http://www.tinysemi.com, or consult your nearest Tinysemi's sales office for further assistance.